Sparse Coding
- dictlearn.methods._omp.omp(Y, D, n_nonzero_coefs)
Orthogonal Matching Pursuit wrapper
- Parameters:
Y (ndarray of shape (n_features, n_samples)) – Data matrix.
D (ndarray of shape (n_features, n_components)) – Initial dictionary, with normalized columns.
n_nonzero_coefs (int, default=None) – Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features.
- Returns:
X (ndarray of shape (n_components, n_samples)) – The sparse codes.
err (float) – The approximation error
Example:
X, err = omp(Y, D, n_nonzero_coefs)
- dictlearn.methods._omp.omp_2d(Y, D, n_nonzero_coefs)
Orthogonal Matching Pursuit 2D wrapper
- Parameters:
Y (ndarray of shape (n_features, n_samples)) – Data matrix.
D (ndarray of shape (n_components, n_features)) – The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized cols.
n_nonzero_coefs (int, default=None) – Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features.
- Returns:
X (ndarray of shape (n_components, n_samples)) – The sparse codes.
err (float) – The approximation error
Example:
X, err = omp_2d(Y, D, n_nonzero_coefs)
- dictlearn.methods._omp.omp_postreg(Y, D, X, mu)
Post Orthogonal Matching Pursuit regularization. Solve regularized least squares problem on support computed by OMP or other sparse encoder.
- Parameters:
Y (ndarray of shape (n_features, n_samples)) – Data matrix.
D (ndarray of shape (n_features, n_components)) – The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized cols.
X (ndarray of shape (n_components, n_samples)) – The sparse codes.
mu (float) – The regularization factor
- Returns:
X – The sparse codes.
- Return type:
ndarray of shape (n_components, n_samples)
Example:
X = omp_postreg(Y, D, X, mu)
- dictlearn.methods._omp.ker_omp_postreg(K, A, X, mu)
Post Kernel Orthogonal Matching Pursuit regularization. Solve regularized least squares problem on support computed by OMP or other sparse encoder.
- Parameters:
K (ndarray of shape (n_samples, n_samples)) – Kernel matrix.
A (ndarray of shape (n_samples, n_components)) – The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized cols.
X (ndarray of shape (n_components, n_samples)) – The sparse codes.
mu (float) – The regularization factor
- Returns:
X – The sparse codes.
- Return type:
ndarray of shape (n_components, n_samples)
Example:
X = ker_omp_postreg(K, A, X, mu)